572 research outputs found

    Turbulence and Mixing in the Intracluster Medium

    Full text link
    The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy ss increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when dT/dr>0dT/dr>0 and the "magnetothermal instability" when dT/dr<0dT/dr<0. The ICM is thus buoyantly unstable regardless of the signs of dT/drdT/dr and ds/drds/dr. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to r^\hat{\bf r} when dT/dr>0dT/dr>0 and parallel to r^\hat{\bf r} when dT/dr<0dT/dr<0), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities 10100km/s\gtrsim 10 -100 {km/s}. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the general mixing properties of the IC

    A Kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU

    Full text link
    (Abridged) Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfv\'en waves or Alfv\'enic fluctuations at MHD scales and by kinetic Alfv\'en waves (KAWs) at kinetic scales kρi1k_\perp \rho_i\gtrsim 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when γ/ω0.25|\gamma/\omega|\simeq 0.25, where ω(k)\omega(k) and γ(k)\gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio γ/ω\gamma/\omega is evaluated in the limit as the propagation angle approaches 90 degrees relative to the direction of the mean magnetic field.Comment: Submitted to Ap

    Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars

    Full text link
    We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first 10\sim 10 seconds after core collapse. We inject a super-magnetosonic wind with E˙=1051\dot E = 10^{51} ergs s1^{-1} into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At 5\sim 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii 1011\sim 10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on 0.010.1\sim 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    On the Energetics of Advection-Dominated Accretion Flows

    Get PDF
    Using mean field MHD, we discuss the energetics of optically thin, two temperature, advection-dominated accretion flows (ADAFs). If the magnetic field is tangled and roughly isotropic, flux freezing is insufficient to maintain the field in equipartition with the gas. In this case, we expect a fraction of the energy generated by shear in the flow to be used to build up the magnetic field strength as the gas flows in; the remaining energy heats the particles. We argue that strictly equipartition magnetic fields are incompatible with a priori reasonable levels of particle heating; instead, the plasma β\beta in ADAFs (defined to be the gas pressure divided by magnetic/turbulent pressure) is likely to be \gsim 5; correspondingly, the viscosity parameter α\alpha is likely to be \lsim 0.2Comment: 24 pages, ApJ submitte
    corecore